浅谈TE161S型液压站的应用

赵双龙 郭玉红 赵雪剑

(山西兰花科技创业股份有限公司伯方煤矿分公司)

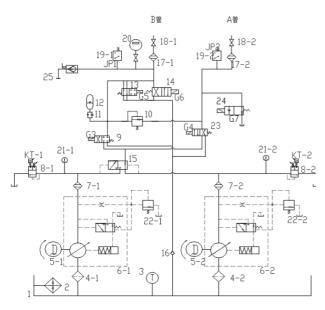
摘 要:根据2016年版的《煤矿安全规程》新增第425条规定:安全制动必须有并联冗余的回油通道。在我国煤矿行业矿井提升机液压制动系统大多不具备此功能,为此我矿把原有液压制动系统更换为新型的TE161S液压系统,从而满足规程的新要求。

关键词:液压站;冗余回路

1 现状

伯方煤矿副斜井提升系统为简单的单轨单钩串车提升,液压站是矿井提升机重要的安全和控制部件,它和盘形制动器组成一套完整的制动系统,为盘形制动器提供可以调节的压力油,使提升机获得不同的制动力矩;使矿井提升机正常地运转、调速、停车。在任何事故状态下,可以使盘形制动器的油压迅速降低到预先调定的某一值,经延时后,盘形制动器的全部油压值迅速回到零。使提升系统处于全制动状态。但是根据2016《煤矿安全规程》第四百二十五条规定,安全制动必须有并联冗余的回油通道,我矿提升机现在采用的液压站为二级制动液压站,不能满足第四百

二十五条的要求,安全制动并联的冗余回油通道,每一回油通道均应并联2个阀位监测电磁换向阀,即使有一个电磁换向阀出现换向故障,另一个还能实现本次安全制动,并监测到换向故障的电磁换向阀,并能报警同时闭锁下次开车的功能。通过更换TE161S液压系统,使我矿副斜井提升系统满足了规定要求。


2 TE161S液压站主要结构与工作原理

(1)结构特点

TE161S液压站主要由油箱、泵装置和阀组组成。液压站有两套油泵装置,两套电液比例调压装置,一套工作,一套备用。两油泵互为备用时,由液动换向阀自动换向。系统采用恒压泵作为工作油源,可

以减小系统发热。油箱上设有加热器, 若油温过低, 可以投入加热器,加热到15oC即可正常工作。系统主 阀组上的元件主要采用插装阀,使系统工作更加可 靠。液压站出油口设有滤油器,防止制动器油缸回油 时将杂质带入系统。液压站还装有油箱温度传感器 和压力变送器,用于监控油温和压力的变化。

(2)作制动原理(参见图1)

液压站原理图 图 1

液压站可以为盘形制动器提供不同油压的压力 油,油压的变化由电液比例溢流阀8来调节。系统 正常工作时,电磁铁G3,G4,G5,G7通电,压力油经 液动换向阀15、电磁阀9、23、滤油器17,球式截止阀 18分别进入盘形制动器:司机可以通过调节电液比 例溢流阀8的电压大小来实现油压的变化,从而达 到调节制动力矩的目的;当电液比例溢流阀8的比 例电磁铁控制电压增加时,系统油压升高,制动器开 闸: 当电液比例溢流阀8的比例电磁铁控制电压减 少时,系统油压下降,制动器合闸;当电液比例溢流 阀8的比例电磁铁控制电压减少至零时,这时系统 的油压最低为残压,提升机处于完全制动状态。

(3)安全制动原理(参见图1)

系统发生故障时,如全矿停电等,提升机必须实

现紧急制动。此时电机、KT线圈、电磁铁G3、G4、G7断 电,A组盘形制动器油压立刻降为零,B组盘形制动器 油压降为溢流阀10调定的压力P1级值,即第一级制动 油压值,保压到时间继电器动作,电磁铁G5断电,G6通 电,油压降到零,实现全制动。在延时过程中,蓄能器 起稳压补油作用,调节单向节流截止阀的开口度可调 节其补油量,使延时过程中P1值基本稳定在要求值。

以上这个过程,使提升机在紧急制动时,获得了 良好的二级制动性能,从图3上看:从A点(即P2点) 降到B点,A组盘形制动器处于制动状态,整个卷筒受 到1/2以上的制动力矩。B组盘形制动器的油压降到 一级制动油压PI级(从B点到C点)延时t1秒后到达D 点,此时提升机已停车,电磁换向阀G5延时后断电, G6延时后通电,油压从PI级降到零压(即从D点到E 点),完成二级制动。盘形制动器以三倍的静力矩将卷 筒牢固地闸住,使其安全的停止转动。

TE161S液压站装置优点

- (1)系统最大工作油压为6.3Mpa,控制电压不 得超过10V。
- (2)油压稳定。工作油压在0.8Pmax以下,其压 力振摆不大于 ± 0.2MPa;工作油压在 0.8Pmax 以上, 其压力振摆不大于±0.4MPa。
- (3)在制动和松闸过程中,油压和电压跟随性 好,基本呈线性,电压为零时,系统残压≤0.5MPa。
 - (4)紧急制动时,液压站应具有良好的二级制动性能。

结束语

TE161S液压站项目已更换完成并在我矿副井绞车投 人运行,更换后的设备每一回油通道均并联2个阀位监 测电磁换向阀,即使有一个电磁换向阀(下转第7页) 法,实现了长距离通风安全。

三是加大设备投入。投入85万元,在掘进工 作面引进大功率2*55KW变频风机,在巷道掘进前 期低频运行能节约电能消耗, 巷道掘进后期高频 运行提供足够的风量冲淡瓦斯等有害气体;投入 20.05万元,安装了一套"煤矿瓦斯巡检系统",通过 井下局域网将瓦斯数据实时传输到井上,实现全 矿瓦斯实时自动汇总分析,同时对瓦检员进行有 效监督,避免瓦检员空检漏检现象。

(四)机电运输管理方面

一是投入556万元引入柴油机单轨吊并试验 成功,优化了我矿辅助运输方式,实现了"技术减 人"的目标,初步实现了运输物料的一站式服务, 提高了运输效率,减少了换装环节,增加了辅助运 输的安全性。

二是引进了EBZ220S型悬臂式掘进机,该掘进

机投入使用后,解决了综掘队在掘进过程遇到地 质构造必须放炮的难题,减少了不安全因素。

三是近年来我矿对主运输系统进行了技改, 盘区大巷等主要皮带机更换为变频器启动方式, 有效解决皮带机重载启动的安全问题。

四是投入61万元采购了一套液压支架撤架装 置,取代以往采煤工作面撤架时采用的钢丝绳加 导向轮拉架的方式,优化了矿井撤架工艺,确保撤 架安全。

以上是我在实际工作中对"总工程师如何抓 安全"的一些做法和粗浅感悟。总之,抓好煤矿技 术管理是保证煤矿安全的有力支撑,总工程师负 有安全生产技术的决策和指挥权,只要煤矿有一 名合格尽职的总工程师,就一定能够撑起煤矿安 全的一片天。

(上接第37页)出现换向故障,另一个还能实现本次 安全制动,并监测到换向故障的电磁换向阀,能报警 并闭锁下次开车的功能。对于增加手动泄压阀的方 式不在并联冗余的范畴,因为它与液压站上的电磁 阀不是同类元件,控制方式一个是自动控制,一个是 人工手动控制。从安全角度来看,手动控制的可靠

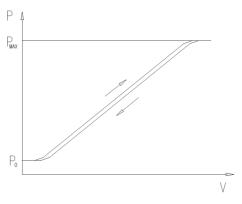


图 2 油压——电流特性曲线

性不高,不推荐使用,仅能作为极端情况下,冗余保 护以外的后备措施。根据提升机安全保护的要求, 安全制动的冗余部件之间,工作方式为并行同时动 作,不存在切换过程,安全可靠性更高。完全满足新 《煤矿安全规程》规定,极大地提高了矿井提升机的 制动安全性,为我矿安全生产提供了有力保障。

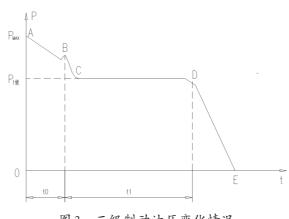


图 3 二级制动油压变化情况